ELECTRICITY AND HEAT

Duncan Millard International Statistics Advisor

duncan.millard68@gmail.com

Key Electricity trends

Key concepts

Key points for reporting

Duncan Millard, 2019

World Electricity Production by Source

Change since 1974:

Biofuels and

waste

Solar, Wind, etc.

Hydro

Total: 1974: 6 298 TWh 2016: 25 082 TWh

- 4X increase in global electricity production Natural gas
 - Lower share of Oil
 - Lower share of Hydro
 - Higher share of Natural Gas
 - Higher share of Nuclear
 - Higher share of Solar & Wind

World Electricity Production by Source (2016)

As of 2016:

- Coal is the dominant fuel
- 68% of electricity output is from combustible fuels
- Solar and wind output is small, but growing

World Electricity Production by Region

- Trends in production growth differ by region
- As of 2011, non-OECD countries produce the majority of global electricity (2016: 56%)
- Strong growth in Asia in recent years

World Electricity Consumption by Sector (2016)

Energy vs. Power

Power	=	Energy / Time
1 Watt	=	1 Joule / second
In 1 hour:	1 Wat For co i.e. 1	tt of Power consumes 3 600 Joules of energy onvenience, this amount is known as a watt hour (Wh) Watt hour = 3600 Joules
Key point:	Watts Watt	s are units of power hours are units of energy

Electricity: Primary vs. Secondary

Electricity is produced as both primary and secondary energy

Heat: Primary vs. Secondary

Heat is also produced as both primary and secondary energy

Production: Two Producer Types

Main Activity Producer

Generate electricity / heat for third parties as a primary activity.

Autoproducer

Generate electricity / heat wholly or partly for their own use as an activity which supports their primary activity.

Note: classifications in the energy balance are not dependent on ownership (public or private) or on size of generation plant

Production: Three Plant Types

Reporting Conventions: Electricity & Heat

+	Electricity Only	Report all production	Report all production			
	Heat Only	Report all production	Report <u>heat SOLD only*</u>			
76	CHP	Report all production	Report all electricity production Report <u>heat SOLD only*</u>			

*Only report fuel inputs related to heat sold

Production: Gross vs. Net

- Gross Production: All electricity / heat produced
- **Own Use:** Amount consumed to support plant operation
- Net Production: Electricity / heat distributed

Reporting Conventions: Own Use

		Main Activity Producer	Autoproducer
E	Electricity Only	Gross – Own Use = Net	Gross – Own Use = Net
	Heat Only	Gross – Own Use = Net	Assume Gross = Net (of heat sold)
	CHP	Gross – Own Use = Net	Electricity: Gross – Own Use = Net Heat: Assume Gross = Net (of heat sold)

* For heat sold only

Gross production vs Final consumption (2016)

The difference between Gross production and final consumption is due to **Own Use** and **Transmission and Distribution losses**

Transmission and Distribution Losses

- Energy is lost as electricity travels through cables and transformers
- In general, losses would be expected to be in the range of about 5 -15%
- However, higher losses can occur especially in distribution (unauthorised use)

Source: IEA ETSAP - Technology Brief E12, 2012; IEC, Geneva, 2007

Trade

Unlike other fuels, trade of electricity and heat:

- Is reported on the basis of borders crossed, NOT origin and destination or ownership of plant.
- Includes all trade, including transit.

Example:

Exports of electricity from Portugal to France transiting through Spain, would be reported as:

- Portugal: Exports to Spain
- Spain: Imports from Portugal and Exports to France
- France: Imports from Spain
- This is true even if the plant was German owned.

Generation efficiency

Efficiency = Output / Input (NCV)

- It is always < 100 %
- It differs by fuel / technology
- It must be calculated in energy units

Average efficiencies % for electricity plants							
FUEL Efficiency							
fuel oil	17% - 33%						
gas/diesel	35% - 41%						
anthracite	30% - 40%						
natural gas 30% - 50%							
CHP plants	50% – 70%						

Capacity Factors (Load Factors, Utilisation rates)

An indicator of use of the power station over the year

Calculation

Net maximum capacity is the maximum potential power that can be supplied with at the point of outlet, with all plant running, on 31 December.

OECD recent average capacity factors

 Nuclear 	74.3
• Hydro	34.5
 Geothermal 	80.6
 Solar 	13.3
• Wind	26.2
• Fossil	44.9

Calculating Capacity factors

Capacity factor = $\frac{Net \ electricity \ production}{Capacity \ \times \ Time}$

Can you think of how the capacity factor can be used to check data?

Capacity factors – how are they used to check data?

Capacity is too low or electricity production is too high.

This happens sometimes with co-firing, as the capacity data available is usually related to only one fuel.

Another suggestion for using utilisation rates is to check the time series.

Any big drop or increase is usually the cause of capacity fluctuations – check the data if there were no changes.

Example Capacity (load) factors: Wind

Capacity Utilisation Rate - Wind

Impacts of changing capacity and weather

- Within renewables, use (and thus) utilisation factors can be heavily influenced by:
 - weather conditions;
 - wind speeds affect for onshore and offshore wind,
 - rainfall for hydro
 - hours of sunshine for solar PV.
 - The non-uniform addition of capacity for example, a large generator could add a high capacity installation towards the end of the year and only generate for a very short period.
- To remove the first effect, the EU uses long-term (5, wind and 15, Hydro years) average load factors in its calculation of renewables for its Renewable target.
- For the second an approach is the "unchanged configuration basis"
 - i.e. only include plants who are producing at the start and end of the year providing a more reflective picture of the underlying trend.

UK load factors all and unchanged configuration

Electricity data sources - types of data collection

Surveys	
	Power producers, transmission and distribution system operators, market operators /electricity exchanges Enterprises Households
Administrative data	
	Energy regulators Customs offices Data collected from programme/policy implementation
Direct measurements	
	Conventional and smart meters
Estimation/modelling	
	e.g. Plant capacity information – e.g. Solar PV capacity -> Solar PV electricity generation behind the meter

Generation estimation techniques

- Best approach is direct measurement generation by operator is known
- Apply average load factors to know capacity
- "Borrow" know load factors from neighboring or similar climatic country
- Gross up using small scale pilot studies
- Data matching studies for residential PV

Capacity estimation

Using trade data to estimate amount of PV being installed

- Solar panels account for almost all trade under HS Code 854140, import statistics for this product group are a good indicator of the amount of solar panels imported into a country.
- For further info see <u>https://www.irena.org/publications/2018/Dec/Measurement-and-estimation-of-off-grid-solar-hydro-and-biogas-energy</u>
- Satellite images
- Press/media reporting?

Key points for reporting electricity & heat data

Tables and products

IEA has 8 Tables covering

- Electricity and heat data generation by:
 - 47 individual fuels
 - type of producer
 - type of plant/unit
- Consumption data by sector
- Technical information on electrical systems

https://www.iea.org/media/statistics/questionn aires/EleQues.xlsm

Duncan Millard, 2019

Tables/Questionnaire relations in Electricity and Heat Questionnaire

Net electricity and heat production

		MAIN ACTIVITY PRODUCER PLANTS			AUTOPRODUCER PLANTS			TOTAL	
Menu			CHP	HEAT (ONLY)		СНР	HEAT (ONLY)	MAIN ACTIVITY PRODUCER	AUTOPRODUCER
ELECTRICITY UNIT: GWh (10^6 kWh)		A	в	С	D	E	F	G(=A+B+C)	H(=D+E+F)
Electricity	1	55 394	226		1 227	2 67		55 620	4 084
Nuclear	2							0	0
Hydro	3	23 772			421			23 772	421
Pumped Hydro	4							0	0
Geothermal	5		_					0	0
Solar	6		lype c	of Plant		Tvn	e of Prod	licer	0
Tide, Wave and Ocean	7		L			I I V P			0
Wind	8	38						38	0
Combustible Fuels	9	31 584	226		808	2 857		31.810	3 663
Heat from Chemical Sources	10				atails on	the type	of comb	ustihla	0
Other Sources	11					the type			0
HEAT Unit: TJ	R				fuel	are also	collected		
Heat	12		0	0					0
Nuclear	13							0	0
Geothermal	14							0	0
Solar	15				- • • • • • • • • • • •]]		0	0
Combustible Fuels	16		Source	es of ele	ctricity ar	nd neat		0	0
Heat Pumps	17							0	0
Electric Boilers	18							0	0
Heat from Chemical Sources	19								0
Other Sources	20							0	0

Net electricity and heat production

Example:

- A <u>power plant</u> is using natural gas and is producing 5000 GWh of electricity
- A hydro <u>power plant</u> is producing 20 GWh of electricity
- A <u>waste recycling facility</u> uses waste to produce 45 GWh of electricity

TABLE 2. NET ELECTRICI	TY AND HEAT PRO	DUCTION : (TRANSE	FORMATION SECTO	DR)					
2015		MAIN ACTIVITY PRODUCER PLANTS			AUTOPRODUCER PLANTS			TOTAL	
		ELECTRICITY (ONLY)	СНР	HEAT (ONLY)	ELECTRICIT Y (ONLY)	СНР	HEAT (ONLY)	MAIN ACTIVITY PRODUCER	AUTOPRODUCER
ELECTRICITY UNIT:	GVh (10*6 kVh)	А	в	С	D	E	F	G(=A+B+C)	H(=D+E+F)
Electricity	a	5 020	0		45	0		5 020	45
Nuclear	ь							0	0
Hydro	c (20						20	0
Pumped Hydro	d							0	0
Geothermal	e							0	0
Solar	f							0	0
Tide, Wave and Ocean	9							0	0
Wind	h							0	0
Combustible Fuels	i 🕻	5 000		(45			5 000	45
Heat from Chemical Sources	1								0
Other Sources	m							0	0

Gross electricity and heat production from combustible fuels 1/2

	20	08		MAIN AC	TIVITY PRODUCER	PLANTS	
Menu					ELECTRICITY (ONLY)	CHP	HE) (ON
F	UELS			UNITS	А	В	С
		Fuel input	1	10³ t			
ANTHRACITE		Fuel input	2	TJ (NCV)			
	RACITE	Elec. prod.	3	GWh			
		Heat prod.	4	τJ			

For each combustible fuel:

INPUT shall:

- be reported both in natural (e.g. ktons) and energy units (e.g. TJ)
- match INPUT given in the other questionnaires.

INPUT (TJ) = INPUT (ktons) x NCV (TJ/ktons)

NCV shall:

- be in reference ranges for a given fuel (reliability)
- match NCVs given in the other questionnaires.

Gross electricity and heat production from combustible fuels 2/2

20	800		MAIN AC	TIVITY PRODUC	ER PLANTS	
Menu	_	_		ELECTRICITY (ONLY)	СНР	HE. (ON
FUELS			UNITS	А	В	с
ANTHRACITE	Fuel input	1	10³ t			
	Fuel input	2	TJ (NCV)			
	Elec. prod.	3	GWh			
	Heat prod.	4	TJ			

Duncan Millard, 2019

Final Check list

- Main activity producers generate electricity/heat as primary activity vs Autoproducers generate electricity/heat as an additional activity (partly or wholly for their own use.
- For electricity: **Net production = Gross production Own use**
- For Heat:
 - Main activity: Net production = Gross production Own use
 - Autoproducers: **Net production = Gross production**
- Generation efficiency = Output / Input (NCV) and should always be <100
- Capacity factor = Actual production / Maximum potential production
 - Maximum potential production = Capacity * 24 (hours) * 365 (days)

Learn more about Energy Statistics

A comprehensive Energy Statistics Manual available in 10 languages.

Click to download it free of charge!

Visit the <u>IEA's Statistics website</u> to access additional resources, including our <u>webinars</u>, questionnaires, glossary and documentation related to our data collection methodologies.

To learn more about the international framework for energy statistics, please refer to the United Nations' International Recommendations for Energy Statistics (IRES).

Thank you for listening – Any Questions

duncan.millard68@gmail.com

ANNUAL ELECTRICITY DATA COLLECTION IN THE UK

https://www.gov.uk/government/organisations/departme nt-for-business-energy-and-industrialstrategy/about/statistics

For reference

This is personal reflection on the data collection of electricity data in the UK presented by the former Chief Energy and Climate Change statistician in the UK for the period 2008 to 2015.

DECC's activities were integrated within the department for Business, Energy and Industrial Strategy (BEIS) in 2016.

Annual electricity data collection

- Each year, three main electricity surveys are carried out
 - one detailed survey of the major power producers (MPPs),
 - one survey of the major suppliers, and
 - one less detailed survey of electricity distributors.
- These are supplemented with additional data from the electricity
 - autogenerators survey,
 - the National Grid,
 - Iron and Steel Statistics Bureau,
 - Small scale renewables (contracted out), as well as internal analysis.
- The annual statistics are published one year in arrears (t-1), but revisions are typically carried out to the previous two years, t-2 and t-3, where revised data has been received.

Surveys (1)

- Major Power Producers (MPPs) survey (annual): census of approximately 35 MPPs surveyed electronically –
 - Collects for fuel used, CVs, electricity generated, net electricity supplied to the grid, own use of electricity, sales, and capacity, broken down by generation type/fuel. For pumped storage plants, any electricity consumed in pumping is also reported.
 - Coverage: all MPPs, representing approximately 90% of electricity generation
 - Response rate: approximately 100%
 - Some MPPs' power stations will report individually
- Electricity Suppliers survey (annual): approximately 30 main suppliers surveyed electronically – sales data split by SIC code. This also includes information on the value of sales, used in the calculation of energy prices.
 - Covering approx. 95% of electricity sales, Response rate: ~ 100%
- Electricity Distributors survey (annual): 13 Distribution Network Operators (DNOs) – all except the two Scottish DNOs, surveyed for quantity of electricity distributed and losses.

Other data collection – Autogenerators/CHP

- 50 per cent of production from 'other generators' comes from good quality combined heat and power (CHP). Good quality CHP data are collected annually via the administrative data of the CHPQA scheme The CHPQA data collection system covers all plants which are certified as having Good Quality CHP.
- A further 15 per cent of electricity produced by 'other generators' is produced by the 'power only' part of the CHP plants, which consists of the electrical capacity in CHP plants which do not qualify as Good Quality and is derived from the data collected through the CHPQA process.
- EGI quarterly survey: A further 15 per cent of electricity generation came from 'power only' plants. Data for these plants are collected quarterly via a survey run by the Office of National Statistics (ONS) on behalf of DECC.

Additional data sources

- Iron and Steel Statistics Bureau (ISSB) (annual): electricity generated, consumed and lost by the iron and steel industry, blast furnaces and coke ovens.
- Renewables database (annual): renewables (including co-firing) generation (for non-MPP).
- DECC (annual internal analysis): Calorific Values and Conversion factors, used to convert fuel masses to energy units.
- British Energy (annual): Average thermal efficiencies for Nuclear electricity.
- National Grid: electricity exports/imports to/from France and the Netherlands, half-hourly,
- Single Electricity Market Operator: electricity exports/imports to/from the Republic of Ireland, half-hourly,
- Elexon (monthly): transmission losses and generation data for the GB National Grid.
- Ofgem: distribution units and loss percentages summary

Electricity supplied by fuel type, 1990 to 2017

